๐Ÿ“’ Today I Learn/๐Ÿ Python

240612 Today I Learn๋”ฅ๋Ÿฌ๋‹ ์ด๋ก ๋จธ์‹ ๋Ÿฌ๋‹ vs. ๋”ฅ๋Ÿฌ๋‹๐Ÿ’ก ๋จธ์‹ ๋Ÿฌ๋‹๊ณผ ๋”ฅ๋Ÿฌ๋‹์€ ๋ชจ๋‘ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ๊ฐ€์ค‘์น˜๋ฅผ ํ•™์Šตํ•˜์—ฌ ํŒจํ„ด์„ ์ธ์‹ํ•˜๊ณ  ๊ฒฐ์ •์„ ๋‚ด๋ฆฌ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฐœ๋ฐœ๊ณผ ๊ด€๋ จ๋œ ์ธ๊ณต์ง€๋Šฅ(AI)์˜ ํ•˜์œ„ ๋ถ„์•ผ์ด๋‹ค.๋จธ์‹ ๋Ÿฌ๋‹: ๋ฐ์ดํ„ฐ ์•ˆ์˜ ํ†ต๊ณ„์  ๊ด€๊ณ„๋ฅผ ์ฐพ์•„๋‚ด๋ฉฐ ์˜ˆ์ธก์ด๋‚˜ ๋ถ„๋ฅ˜๋ฅ˜๋ฅผ ํ•˜๋Š” ๋ฐฉ๋ฒ•๋”ฅ๋Ÿฌ๋‹: ๋จธ์‹ ๋Ÿฌ๋‹์˜ ํ•œ ๋ถ„์•ผ๋กœ ์‹ ๊ฒฝ์„ธํฌ ๊ตฌ์กฐ๋ฅผ ๋ชจ๋ฐฉํ•œ ์ธ๊ณต ์‹ ๊ฒฝ๋ง*์„ ์‚ฌ์šฉํ•จ.* ์ธ๊ณต์‹ ๊ฒฝ๋ง : ์ธ๊ฐ„์˜ ์‹ ๊ฒฝ์„ธํฌ๋ฅผ ๋ชจ๋ฐฉํ•˜์—ฌ ๋งŒ๋“  ๋ง(Networks). ์ธ๊ณต์‹ ๊ฒฝ๋ง์˜ ๊ฐ€์žฅ ์ž‘์€ ๋‹จ์œ„๋ฅผ ํผ์…‰ํŠธ๋ก ์ด๋ผ๊ณ  ํ•œ๋‹ค.Gradient Descent๐Ÿ’ก ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•(Gradient Descent)์ธ๊ณต์‹ ๊ฒฝ๋ง ์˜ค์ฐจํ•จ์ˆ˜์˜ ์ตœ์†Ÿ๊ฐ’*์„ ์ฐพ์•„๊ฐ€๋Š” ์ตœ์ ํ™” ๊ธฐ๋ฒ•ํšŒ๊ท€ ๋ฌธ์ œ์˜ ๊ฒฝ์šฐ ๊ฐ€์ค‘์น˜(weight)๋ฅผ ์ด๋ฆฌ ์ €๋ฆฌ ์›€์ง์ด๋ฉด์„œ ์ตœ์†Œ์˜ MSE๋ฅผ ๋„์ถœํ•˜๋Š” ๊ฒƒ.ํ•จ์ˆ˜..
240612 Today I Learn๋จธ์‹ ๋Ÿฌ๋‹๋จธ์‹ ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ข…๋ฅ˜์ง€๋„ ํ•™์Šต (Supervised Learning)๋น„์ง€๋„ ํ•™์Šต (Unservised Learning)๊ฐ•ํ™” ํ•™์Šต (Reinforcement Learning)๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ  ์„ฑ๋Šฅ ํ‰๊ฐ€ ์ง€ํ‘œ์ •ํ™•๋„ Accuracy = (True Positive +True Negative)/TotalAccuracy ๊ฐ€ ๋งŒ๋Šฅ์ผ ์ˆ˜ ์—†๋Š” ์ด์œ ์–ด๋–ค ํšŒ์‚ฌ์—์„œ 100๋ช…์ค‘ 2๋ช…์„ ์•”ํ™˜์ž๋กœ ์˜ˆ์ธกํ•˜๋Š” ๋ชจ๋ธ์„ ๋งŒ๋“ค๊ณ  ์‹ถ์„ ๋•Œ, accuracy๋ฅผ ๊ฐ€์žฅ ๋†’๊ฒŒ ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์€ ๋ฌด์—‡์ผ๊นŒ?๋ฐ”๋กœ 100๋ช…์˜ ํ™˜์ž๋ฅผ ๋ชจ๋‘ ์•”ํ™˜์ž๋ผ๊ณ  ๋ถ„๋ฅ˜ํ•˜๋Š” ๋ชจ๋ธ์„ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด๋‹ค. 100๋ช…์˜ ํ™˜์ž๋ฅผ ๋ชจ๋‘ ์•”ํ™˜์ž๋กœ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋ชจ๋ธ์˜ ์ •ํ™•๋„๋Š” ๋ฌด๋ ค 98%๊ฐ€ ๋œ๋‹ค. ๊ทธ๋ ‡๋‹ค๋ฉด ์ด ํšŒ์‚ฌ๋Š” '์ €ํฌ ๋ชจ๋ธ์€ 98%์˜ ์ •ํ™•๋„๋กœ..
240611 Today I Learn๋น„์ง€๋„ ํ•™์Šต ๐Ÿ’ก ๋น„์ง€๋„ํ•™์Šต๋‹ต์„ ์•Œ๋ ค์ฃผ์ง€ ์•Š๊ณ  ๊ณต๋ถ€์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•- ์—ฐ๊ด€๊ทœ์น™- ๊ตฐ์ง‘ํ™” K-Means Clustering๐Ÿ’ก K-Means Clustering์ฃผ์–ด์ง„ ๋ฐ์ดํ„ฐ๋ฅผ k๊ฐœ์˜ ํด๋Ÿฌ์Šคํ„ฐ๋กœ ๋ฌถ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ, ๊ฐ ํด๋Ÿฌ์Šคํ„ฐ์™€ ๊ฑฐ๋ฆฌ ์ฐจ์ด์˜ ๋ถ„์‚ฐ์„ ์ตœ์†Œํ™”ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ๋™์ž‘ํ•œ๋‹ค.์žฅ์  : ์ผ๋ฐ˜์ ์ด๊ณ  ์ ์šฉํ•˜๊ธฐ ์‰ฌ์›€๋‹จ์ ๊ฑฐ๋ฆฌ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ฐ€๊นŒ์›€์„ ์ธก์ •ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ฐจ์›์ด ๋งŽ์„ ์ˆ˜๋ก ์ •ํ™•๋„๊ฐ€ ๋–จ์–ด์ง๋ฐ˜๋ณต ํšŸ์ˆ˜๊ฐ€ ๋งŽ์„ ์ˆ˜๋ก ์‹œ๊ฐ„์ด ๋Š๋ ค์ง๋ช‡ ๊ฐœ์˜ ๊ตฐ์ง‘(K)์„ ์„ ์ •ํ• ์ง€ ์ฃผ๊ด€์ ์ž„ํ‰๊ท ์„ ์ด์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์—(์ค‘์‹ฌ์ ) ์ด์ƒ์น˜์— ์ทจ์•ฝํ•จ์ข‹์€ ๊ตฐ์ง‘ํ™”๋ž€?์‹ค๋ฃจ์—ฃ ๊ฐ’์ด ๋†’์„์ˆ˜๋ก(1์— ๊ฐ€๊นŒ์›€)๊ฐœ๋ณ„ ๊ตฐ์ง‘์˜ ํ‰๊ท  ๊ฐ’์˜ ํŽธ์ฐจ๊ฐ€ ํฌ์ง€ ์•Š์„ ์ˆ˜๋ก ์ข‹์€ ๊ตฐ์ง‘ํ™”์ด๋‹ค.๊ตฐ์ง‘ํ™” ์‹ค์Šต - iris๋ฐ์ดํ„ฐ ๋ฐ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ# ๊ธฐ๋ณธ ๋ผ์ด๋ธŒ๋Ÿฌ..
240610 Today I Learn์˜์‚ฌ๊ฒฐ์ •๋‚˜๋ฌด์™€ ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ๋”๋ณด๊ธฐ# ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ๋ฐ ๋ฐ์ดํ„ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐimport pandas as pdimport matplotlib.pyplot as plttitanic = pd.read_csv('TITANIC/train.csv')# ์ „์ฒ˜๋ฆฌ#Pclass: LabelEncoderfrom sklearn.preprocessing import LabelEncoderle1 = LabelEncoder()titanic['Pclass'] = le1.fit_transform(titanic['Pclass'])#Sex: LabelEncoderle2 = LabelEncoder()titanic['Sex'] = le2.fit_transform(titanic['Sex'])#Age: ๊ฒฐ์ธก์น˜-> ํ‰๊ท ..
240611 Today I Learn์ง€๋„ํ•™์Šต vs. ๋น„์ง€๋„ํ•™์Šต ์ง€๋„ ํ•™์Šต๋น„์ง€๋„ ํ•™์Šต๋ชฉํ‘œ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ์˜ ๊ฒฐ๊ณผ๋ฅผ ์˜ˆ์ธก๋งŽ์€ ์–‘์˜ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ํ†ต์ฐฐ๋ ฅ์„ ์–ป๋Š” ๊ฒƒ์‚ฌ์šฉ ๋ฐ์ดํ„ฐ๋ ˆ์ด๋ธ”์ด ์ง€์ •๋œ ๋ฐ์ดํ„ฐ์„ธํŠธ๋ ˆ์ด๋ธ”์ด ์ง€์ •๋˜์ง€ ์•Š์€ ๋ฐ์ดํ„ฐ์„ธํŠธ์ •ํ™•์„ฑ๋น„๊ต์  ๋†’์Œ→ ๋‹จ, ๋ฐ์ดํ„ฐ์— ์ ์ ˆํ•˜๊ฒŒ ๋ ˆ์ด๋ธ”์„ ์ง€์ •ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ฐ์ดํ„ฐ๋ถ„์„๊ฐ€์˜ ์ ์ ˆํ•œ ์ฃผ๊ด€์ด ํ•„์š”.๋น„๊ต์  ๋ถ€์ •ํ™•๋ณต์žก์„ฑ๋น„๊ต์  ๋‚ฎ์Œ๋น„๊ต์  ๋†’์Œ→ ๋Œ€๊ทœ๋ชจ ํ›ˆ๋ จ ์„ธํŠธ, ํ†ต๊ณ„ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๊ฐ€ ํ•„์š”ํ•จ.ํ™œ์šฉ ๋ถ„์•ผ๊ฐ์ • ๋ถ„์„, ์ผ๊ธฐ ์˜ˆ๋ณด ๋ฐ ๊ฐ€๊ฒฉ ์˜ˆ์ธก์ด์ƒ ๊ฐ์ง€, ์ถ”์ฒœ ์—”์ง„, ๊ณ ๊ฐ ํŽ˜๋ฅด์†Œ๋‚˜ ๋ฐ ์˜๋ฃŒ ์˜์ƒ์‚ฌ์šฉ๋˜๋Š” ๊ธฐ๋ฒ•์„ ํ˜• ํšŒ๊ท€(Linear Regression)๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€(Logistic Regression)๋‚˜์ด๋ธŒ ๋ฒ ์ด์ฆˆ(Naive Bayes)K-์ตœ๊ทผ์ ‘ ์ด์›ƒ(k-Nearest Neighbors)์„œ..
240610 Today I LearnํšŒ๊ท€๋ถ„์„์ด๋ž€?๐Ÿ’ก ํšŒ๊ท€๋ถ„์„๋…๋ฆฝ๋ณ€์ˆ˜(x)๋กœ ์ข…์†๋ณ€์ˆ˜(y)๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋ถ„์„๊ธฐ๋ฒ•์œผ๋กœ ์ถ”์„ธ์„ *์„ ์ฐพ๋Š”๊ฒƒ์ด ๋ชฉ์ ์ด๋‹ค. ๊ฐ€์ง€๊ณ ์žˆ์ง€ ์•Š์€ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์˜ˆ์ธก์„ ํ•˜๊ณ  ์‹ถ์„ ๋•Œ ์‚ฌ์šฉํ•œ๋‹ค. *์ถ”์„ธ์„  y = a+bxํšŒ๊ท€๋ถ„์„์˜ ๋‹จ๊ณ„๋…๋ฆฝ๋ณ€์ˆ˜(x), ์ข…์†๋ณ€์ˆ˜(y) ์„ค์ • ๋ฐ ๊ฐ€์„ค(๊ท€๋ฌด vs. ๋Œ€๋ฆฝ)์„ค์ •x(๊ฒŒ์ž„์‹œ๊ฐ„, ๋…๋ฆฝ๋ณ€์ˆ˜), y(์ „๊ธฐ์„ธ, ์ข…์†๋ณ€์ˆ˜)๋Œ€๋ฆฝ๊ฐ€์„ค : ๊ฒŒ์ž„์‹œ๊ฐ„์€ ์ „๊ธฐ์„ธ์™€ ๊ด€๋ จ์ด ์žˆ์„ ๊ฒƒ์ด๋‹ค.→ ๊ท€๋ฌด๊ฐ€์„ค : ๊ฒŒ์ž„์‹œ๊ฐ„์€ ์ „๊ธฐ์„ธ์™€ ๊ด€๋ จ์ด ์—†์„ ๊ฒƒ์ด๋‹ค.๋ฐ์ดํ„ฐ ๊ฒฝํ–ฅ์„ฑ ํ™•์ธ → ์‚ฐ์ ๋„๋ฅผ ๊ฐ„๋‹จํ•˜๊ฒŒ ๊ทธ๋ ค๋ณด๊ธฐ๋ฐ์ดํ„ฐ๊ฐ€ ์–ด๋–ป๊ฒŒ ๋ถ„ํฌํ•ด์žˆ๋Š”์ง€ ํ™•์ธํ•˜๊ธฐ.์–ด๋””์— ๋ฐ์ดํ„ฐ๋“ค์ด ๋งŽ์ด ๋ถ„ํฌํ•ด ์žˆ๋Š”์ง€ ํ™•์ธํ•˜๊ธฐ.์ •ํ•ฉ์„ฑ ๊ฒ€์ฆ & ๊ฒฐ๊ณผ ํ•ด์„ํšŒ๊ท€๋ชจ๋ธ(ํšŒ๊ท€์‹)์ด ์–ผ๋งˆ๋‚˜ ์„ค๋ช…๋ ฅ์„ ๊ฐ–๋Š”์ง€? - ์–ผ๋งˆ๋‚˜ ์ •ํ™•ํ•œ์ง€?ํšŒ๊ท€๋ชจ๋ธ์ด ํ†ต๊ณ„์ ์œผ๋กœ ์œ ..
ny:D
'๐Ÿ“’ Today I Learn/๐Ÿ Python' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๊ธ€ ๋ชฉ๋ก (2 Page)